Abstract

ABSTRACTWe present an efficient, general-purpose variant of the Widom test particle insertion method for computing chemical potentials of gaseous solutes in fluids or porous solids. The method is implemented in the Monte Carlo molecular simulation engine Cassandra, but receiving phase configurations are independent of this process and may be pre-sampled by other molecular simulation engines such as molecular dynamics codes. Efficiency enhancements present in this method include configurational biasing and accelerated atomic overlap detection. When applied to the estimation of Henry's law constants of atomistic difluoromethane and pentafluoroethane in ionic liquids, the accelerated overlap detection results in a speedup of more than an order of magnitude compared to conventional methods without sacrificing accuracy. We found good agreement between this method and Hamiltonian replica exchange (HREX) for Henry's law constant and absorption isotherm estimation. This embarrassingly parallel method is especially well suited for screening Henry's law constants of many small gases in the same solvents, since a liquid trajectory can be reused for as many solutes as desired.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call