Abstract

While molar volume-based models for gas solubility in ionic liquids (ILs) have been proposed, free volume within the IL can be shown to be the underlying property driving gas solubility and selecitivity. Previously published observations as to the distinct differences in solubility trends for gases such as CH4 and N2 relative to CO2 in systematically varied ILs can be attributed to positive and negative effects arising from increasing free volume with increasing alkyl chain length. Through the use of COSMOtherm as a powerful and rapid tool to calculate free volumes in 165 existing and theoretical 1-n-alkyl-3-methylimidazolium ([Cnmim][X]) ILs, a previously unreported, yet speculated, critical underlying relationship between gas solubility in ILs is herein described. These results build upon previous assertions that Regular Solution Theory is applicable to imidazolium-based ILs, which appeared to indicate that a global maximum had already been observed for CO2 solubility in imidazolium-based ILs. However, ...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call