Abstract

This study developed a rapid rice yield estimation workflow and customized yield prediction model by integrating remote sensing and meteorological data with machine learning (ML). Several issues need to be addressed while developing a crop yield estimation model, including data quality issues, data processing issues, selecting a suitable machine learning model that can learn from few available time-series data, and understanding the non-linear relationship between historical crop yield and remote sensing and meteorological factors. This study applied a series of data processing techniques and a customized ML model to improve the accuracy of crop yield estimation at the district level in Nepal. It was found that remote sensing-derived NDVI product alone was not sufficient for accurate estimation of crop yield. After incorporating other meteorological variables into the ML models, estimation accuracy improved dramatically. Along with NDVI, the meteorological variables of rainfall, soil moisture, and evapotranspiration also exhibited a strong association with rice yield. This study also found that stacking multiple tree-based regression models together could achieve better accuracy than benchmark linear regression or standalone ML models. Due to the unique and distinct physio-geographical setting of each district, a variation in estimation accuracy from district to district could be observed. Our data processing and ML model workflow achieved an average of 92% accuracy of yield estimation with RMSE 328.06 kg/ha and MAE 317.21 kg/ha. This methodological workflow can be replicated in other study areas and the results can help the local authorities and stakeholders understand the factors affecting crop yields as well as estimating crop yield before harvesting season to ensure food security and sustainability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.