Abstract

Increased phosphorylation of Akt substrate of 160 kDa (AS160) is essential to trigger the full increase in insulin-stimulated glucose transport in skeletal muscle. The primary aim of this study was to characterize the time course for reversal of insulin-stimulated AS160 phosphorylation in rat skeletal muscle after insulin removal. The time courses for reversal of insulin effects both upstream (Akt phosphorylation) and downstream (glucose uptake) of AS160 were also determined. Epitrochlearis muscles were incubated in vitro using three protocols which differed with regard to insulin exposure: no insulin (never exposed to insulin), transient insulin (30 min with 1.8 nmol/l insulin, then incubation without insulin for 10, 20 or 40 min), or sustained insulin (continuously incubated with 1.8 nmol/l insulin). After removal of muscles from insulin, Akt and AS160 phosphorylation reversed rapidly, each with a half-time of <10 min and essentially full reversal by 20 min. Glucose uptake reversed more slowly (half time between 10 and 20 min with essentially full reversal by 40 min). Removal of muscles from insulin resulted in a rapid reversal of the increase in AS160 phosphorylation which preceded the reversal of the increase in glucose uptake, consistent with AS160 phosphorylation being essential for maintenance of insulin-stimulated glucose uptake.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call