Abstract

Flow jets containing velocities up to 5-7 m/s are common in patients with congenital defects and patients with valvular disease (stenosis and regurgitation). The quantitation of peak velocity and flow volume in these jets is clinically significant but requires specialized imaging sequences. Conventional 2DFT phase contrast sequences require lengthy acquisitions on the order of several minutes. Conventional spiral phase contrast sequences are faster, but are highly corrupted by flow artifacts at these high velocities due to phase dispersion and motion during the excitation and readout. A new prospectively gated method based on spiral phase contrast is presented, which has a sufficiently short measurement interval (<4 ms) to minimize flow artifacts, while achieving high spatial resolution (2 x 2 x 4 mm(3)) to minimize partial volume effects, all within a single breathhold. A complete single-slice phase contrast movie loop with 22 ms true temporal resolution is acquired in one 10-heartbeat breathhold. Simulations indicate that this technique is capable of imaging through-plane jets with velocities up to 10 m/s, and initial studies in aortic stenosis patients show accurate in vivo measurement of peak velocities up to 4.2 m/s (using echocardiography as a reference).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.