Abstract
Accurate simulation of solution NMR spectra requires knowledge of all chemical shift and scalar coupling parameters, traditionally accomplished by heuristic-based techniques or ab initio computational chemistry methods. Here we present a novel machine learning technique which combines uncertainty-aware deep learning with rapid estimates of conformational geometries to generate Full Spin System Predictions with UnCertainty (FullSSPrUCe). We improve on previous state of the art in accuracy on chemical shift values, predicting protons to within 0.209 ppm and carbons to within 1.213 ppm. Further, we are able to predict all scalar coupling values, unlike previous GNN models, achieving 3JHH accuracies between 0.838 Hz and 1.392 Hz on small experimental datasets. Our uncertainty quantification shows a strong, useful correlation with accuracy, with the most confident predictions having significantly reduced error, including our top-80% most confident proton shift predictions having an average error of only 0.140 ppm. We also properly handle stereoisomerism and intelligently augment experimental data with ab initio data through disagreement regularization to account for deficiencies in training data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.