Abstract

Rapid passage signals showing the effects of molecular alignment have been observed when low pressure samples of nitrous oxide are interrogated by radiation from a pulsed 7.84 µm quantum cascade laser. These effects occur when the sweep rate of the laser through a Doppler broadened absorption line is much faster than the collisional relaxation time, and when the power density of the linearly polarized laser radiation is sufficient to cause optical pumping. Using a laser pulse of duration 1.3 µs, the frequency sweeps approximately 90 GHz. The variation of the laser tuning rate during the laser pulse, from about100 MHz/ns at the beginning to about 20 MHz/ns at the end, allows the relationship between sweep rate and collisional damping to be investigated. It is shown, by comparing the experimental signals with those calculated by coupled Maxwell–Bloch equations, how the rapid passage effects in nitrous oxide are influenced by the number density, transition cross-section and reorientation lifetime.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.