Abstract

A widely tunable pulsed external cavity quantum cascade laser operating around 8 μm has been used to make rotationally resolved measurements of rapid passage effects in the absorption spectrum of N2O. Rapid passage signals as a function of laser power and N2O pressure are presented. Comparisons are drawn with measurements performed on the same transition with a standard distributed feedback quantum cascade laser. The initial observations on rapid passage effects induced with an external cavity quantum cascade laser show that such high power, widely tunable radiation sources may find applications in both nonlinear optics and optical sensing experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.