Abstract

Despite the prevalent use of alerting sounds in alarms and human–machine interface systems and the long-hypothesized role of the auditory system as the brain's “early warning system,” we have only a rudimentary understanding of what determines auditory salience—the automatic attraction of attention by sound—and which brain mechanisms underlie this process. A major roadblock has been the lack of a robust, objective means of quantifying sound-driven attentional capture. Here we demonstrate that: (1) a reliable salience scale can be obtained from crowd-sourcing (N = 911), (2) acoustic roughness appears to be a driving feature behind this scaling, consistent with previous reports implicating roughness in the perceptual distinctiveness of sounds, and (3) crowd-sourced auditory salience correlates with objective autonomic measures. Specifically, we show that a salience ranking obtained from online raters correlated robustly with the superior colliculus-mediated ocular freezing response, microsaccadic inhibition (MSI), measured in naive, passively listening human participants (of either sex). More salient sounds evoked earlier and larger MSI, consistent with a faster orienting response. These results are consistent with the hypothesis that MSI reflects a general reorienting response that is evoked by potentially behaviorally important events regardless of their modality.SIGNIFICANCE STATEMENT Microsaccades are small, rapid, fixational eye movements that are measurable with sensitive eye-tracking equipment. We reveal a novel, robust link between microsaccade dynamics and the subjective salience of brief sounds (salience rankings obtained from a large number of participants in an online experiment): Within 300 ms of sound onset, the eyes of naive, passively listening participants demonstrate different microsaccade patterns as a function of the sound's crowd-sourced salience. These results position the superior colliculus (hypothesized to underlie microsaccade generation) as an important brain area to investigate in the context of a putative multimodal salience hub. They also demonstrate an objective means for quantifying auditory salience.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call