Abstract

Our eyes move continually, even while we fixate our gaze on an object. If fixational eye movements are counteracted, our perception of stationary objects fades completely, due to neural adaptation. Some studies have suggested that fixational microsaccades refresh retinal images, thereby preventing adaptation and fading. However, other studies disagree, and so the role of microsaccades remains unclear. Here, we correlate visibility during fixation to the occurrence of microsaccades. We asked subjects to indicate when Troxler fading of a peripheral target occurs, while simultaneously recording their eye movements with high precision. We found that before a fading period, the probability, rate, and magnitude of microsaccades decreased. Before transitions toward visibility, the probability, rate, and magnitude of microsaccades increased. These results reveal a direct link between suppression of microsaccades and fading and suggest a causal relationship between microsaccade production and target visibility during fixation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.