Abstract

Microbiological contamination of foods and drinking water is a global problem, and a significant amount of expense is being incurred as a result of such contamination. The microorganisms associated with almost half of all disease outbreaks still go unidentified, primarily as a result of inadequate monitoring and surveillance. Though significant improvements have been made in refining molecular methods for detecting infectious agents, a majority of these methods are being employed only on clinical samples where pathogen densities are much higher than those found in environmental and food samples. Comparative evaluations of the various protocols in terms of cost, sensitivity, specificity, speed, and reproducibility need to be undertaken so that the true applicability of these methods can determined. In the future, molecular methods, especially gene amplifications and in situ hybridizations, will find increasing applications in the differentiation of viable and non-viable organisms, in predicting antimicrobial resistance, and in the identification and characterization of unculturable microorganisms. Though molecular detection methods will not totally replace conventional methods, they will significantly enhance our ability to detect microbial pathogens rapidly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call