Abstract

A rapid one-pot synthesis of hierarchical ZnO hollow spheres consisting of nanoparticles was realized by a facile microwave-assisted solvothermal method using ethanol as the solvent. According to the time-dependent observation of the formation process, a tentative mechanism based on ethyl acetate bubble-templating self-assembly of ZnO nanoparticles was proposed for the formation of the ZnO hollow spheres. Compared with the conventional heating, the microwave irradiation resulted in a significantly shortened reaction time (within 30 min) and considerably improved quality of the ZnO hollow spheres, such as narrower size distribution and more regular morphology, owing to the high heating rate and thus the accelerated reaction rate. It was shown that the microwave-assisted synthesis of ZnO nanostructures with tunable morphologies can be realized by judicious selection of appropriate solvents. The obtained ZnO hollow spheres exhibited an excellent adsorption capacity towards Cr(VI) ions in water because of their high surface area for adsorption and a good ability to preserve the accessible surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.