Abstract

AbstractThis study documents a very rapid increase in convective instability, vertical wind shear, and mesoscale forcing for ascent leading to the formation of a highly unusual tornado as detected by a ground-based microwave radiometer and wind profiler, and in 1-km resolution mesoanalyses. Mesoscale forcing for the rapid development of severe convection began with the arrival of a strong upper-level jet streak with pronounced divergence in its left exit region and associated intensification of the low-level flow to the south of a pronounced warm front. The resultant increase in stretching deformation along the front occurred in association with warming immediately to its south as low-level clouds dissipated. This created a narrow ribbon of intense frontogenesis and a rapid increase in convective available potential energy (CAPE) within 75 min of tornadogenesis. The Windsor, Colorado, storm formed at the juncture of this warm frontogenesis zone and a developing dryline. Storm-relative helicity suddenly increased to large values during this pretornadic period as a midtropospheric layer of strong southeasterly winds descended to low levels. The following events also occurred simultaneously within this short period of time: a pronounced decrease in midtropospheric equivalent potential temperature θe accompanying the descending jet, an increase in low-level θe associated with the surface sensible heating, and elimination of the capping inversion and convective inhibition. The simultaneous nature of these rapid changes over such a short period of time, not fully captured in Storm Prediction Center mesoanalyses, was likely critical in generating this unusual tornadic event.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.