Abstract

The investigation of atmospheric characteristics is of great significance in properly exploiting air and water resources, and quantitatively estimating and nowcasting precipitation. Microwave radiometers are widely used in this field because they can operate unattended for a long time under almost all weather conditions, and obtain high-quality remote sensing data. This research focuses on the applications of ground-based microwave radiometers in retrieving meteorological characteristics of the Qinghai–Tibet Plateau (QTP) during the East Asian winter monsoon (EAWM), such as humidity and temperature structures, stability/convection indices, and cloud and precipitation retrievals. Vertical structures of atmospheric temperature, pressure, humidity, and other variables were investigated under clear-sky and snowy-sky conditions. The statistical characteristics of stability/convection indices in the QTP region, such as convective available potential energy (CAPE) and convective inhibition (CIN), were investigated, with a special focus on snowy-sky conditions. The relationship between potential cloud water resources and atmospheric and thermodynamics and instability conditions were taken into consideration. The results showed that the peak CAPEs under clear-sky and snowy-sky conditions were 1349.11 J/kg and 1165.12 J/kg, which were relatively larger than the corresponding values during the summer monsoon. CINs during the EAWM were small enough to be negligible. For quantitative precipitation forecasting (QPF), brightness temperatures at 30.0 GHz and 51.24 GHz sampling channels were sensitive to the snowfall process. Within 1 h before snowfall, the precipitable water vapour (PWV) and liquid water content (LWC) increased sharply by 0.05 cm and 0.12 mm, respectively, while the CAPE and downwards CAPE decreased by 225.60 J/kg and 180.31 J/kg, respectively. The findings of this article may be meaningful for characterizing meteorology and precipitation in the QTP and similar regions during the winter monsoon.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.