Abstract

PurposeThe purpose of this study is to study the mechanical, tribological and electrical properties of the copper-graphene (Cu-Gn) composites fabricated by a novel rapid tooling technique consist of three-dimensional printing and ultrasonic-assisted pressureless sintering (UAPS).Design/methodology/approachFour different Cu-Gn compositions with 0.25, 0.5, 1 and 1.5 per cent of graphene were fabricated using an amalgamation of three-dimensional printing and UAPS. The polymer 3d printed parts were used to prepare mould cavity and later the UAPS process was used to sinter Cu-Gn powder to acquire free-form shape. The density, hardness, wear rate, coefficient of friction and electrical conductivity were evaluated for the different compositions of graphene and compared with the pure copper. Besides, the comparison was performed with the conventional method.FindingsCu-Gn composites revealed excellent wear properties due to higher hardness, and the lubrication provided by the graphene. The electrical conductivity of the fabricated Cu-Gn composites started increasing initially but decreased afterwards with increasing the content of graphene. The UAPS fabricated composites outperformed the conventional method manufactured samples with better properties such as density, hardness, wear rate, coefficient of friction and electrical conductivity due to homogeneous mixing of metal particles and graphene.Originality/valueThe fabrication of Cu-Gn composite freeform shapes was found to be difficult using conventional methods. The novel technique using a combination of polymer three-dimensional printing and UAPS as rapid tooling was introduced for the fabrication of freeform shapes of Cu-Gn composites and mechanical, tribological and electrical properties were studied. The method can be used to fabricate optimized complex Cu-Gn structures with improved wear and electrical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.