Abstract
Abstract We report on the maturation of optical satellite-image-based ice velocity mapping over the ice sheets and large glacierized areas, enabled by the high radiometric resolution and internal geometric accuracy of Landsat 8's Operational Land Imager (OLI). Detailed large-area single-season mosaics and time-series maps of ice flow were created using data spanning June 2013 to June 2015. The 12-bit radiometric quantization and 15-m pixel scale resolution of OLI band 8 enable displacement tracking of subtle snow-drift patterns on ice sheet surfaces at ~ 1 m precision. Ice sheet and snowfield snow-drift features persist for typically 16 to 64 days, and up to 432 days, depending primarily on snow accumulation rates. This results in spatially continuous mapping of ice flow, extending the mapping capability beyond crevassed areas. Our method uses image chip cross-correlation and sub-pixel peak-fitting in matching Landsat path/row pairs. High-pass filtering is applied to the imagery to enhance local surface texture. The current high image acquisition rates of Landsat 8 (725 scenes per day globally) reduces the impact of high cloudiness in polar and mountain terrain and allows rapid compilation of large areas, or dense temporal coverage of seasonal ice flow variations. The results rival the coverage and accuracy of interferometric Synthetic Aperture Radar (InSAR) mapping.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.