Abstract

<p>Recent years have seen major advancements in satellite Earth observation of polar land ice. Among the most notable are the developments enabled by the Copernicus Sentinel program, including the Sentinel-1 SAR mission. The Sentinel-1 constellation, with its dedicated polar acquisition scheme, has provided the opportunity to derive ice flow velocity of the Greenland and Antarctic ice sheets at an unprecedented scale and temporal sampling. A continuous observational record of the ice sheet margins since October 2014, augmented by dedicated ice sheet wide mapping campaigns, enabled the operational monitoring of key climate variables like ice velocity and glacier discharge. In 2019 additional tracks have been added to the regular acquisition scheme, covering the slow-moving interior of the Greenland Ice Sheet, opening up new opportunities for interferometric applications and permitting to derive monthly ice sheet wide velocity maps. </p><p><br>Based on repeat pass Sentinel-1 SAR data, acquired in Interferometric Wide (IW) swath mode, we have generated a dense archive of ice velocity maps covering the polar regions and encompassing the entire mission duration, now spanning well over 5 years. Including the latest observational data, we present ice velocity maps of Greenland, Antarctica and other major ice caps, focusing on time series of ice flow fluctuations of major outlet glaciers. The ice velocity maps, complemented by high resolution DEMs and ice thickness data, form the basis for studying ice dynamics and discharge fluctuations and trends at sub-monthly to multi-annual time scales. Our results underscore the value of long-term comprehensive monitoring of the polar ice masses, which is vital for to gain insight for predicting their response to ongoing climate warming.</p><p>This poster highlights some of the main achievements and latest developments of 5 years of Sentinel-1 ice flow mapping in the Polar regions facilitated by the ESA Climate Change Initiative (CCI), EU Copernicus Climate Change Service (C3S) and Austrian Space Applications Programme (ASAP). </p>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.