Abstract

Extracellular vesicles (EVs) are nano-sized lipid-membrane vesicles involved in intercellular communication and reflecting the physiological and pathological processes of their parental cells. Rapid isolation of EVs with low cost is an essential precondition for downstream function exploration and clinical applications. In this work, we designed a novel EVs isolation device based on the boronated organic framework (BOF) coated recyclable microfluidic chip (named EVs-BD) to separate EVs from cell culture media. Using a reactive oxygen species responsive phenylboronic ester compound, the highly porous BOF with a pore size in the range of 10–300 nm was prepared by crosslinking γ-cyclodextrin metal-organic frameworks. A mussel-inspired polydopamine (PDA)/polyethyleneimine (PEI) coating was employed to pattern BOF on the PDMS substrate of microfluidic channels. The EVs-BD was demonstrated to offer distinct advantages over the traditional ultracentrifugation method, such as operation simplicity and safety, reduced time and expense, and low expertize requirements. All things considered, a novel approach of EV acquisition has been successfully developed, which can be customized easily to meet the requirements of various EV-relevant research.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call