Abstract

The focus of this study is development of a new, convenient, rapid and sensitive electromembrane extraction approach (based on an ionic liquid-supported MWCNTs/ZnO reinforced hollow fiber, for the first time) as an off-line sample clean-up/preconcentration method coupled with capillary electrophoresis (CE-UV) using field-amplified sample injection (FASI) for quantification of Imatinib mesylate in human plasma. The nano-hybrid sorbent, coated by 1-octyl-3-methylimidazolium bromide ionic liquid ([OMIm]Br) in this research, was prepared by a feasible basic catalyzed sol-gel method. Then, it was immobilized (supported by capillary forces and sonication) in pores of a segment of a polypropylene hollow fiber membrane as the extraction unit after dispersing in 2-nitrophenyl octyl ether (NPOE) solvent and subsequently served as the supported liquid membrane (SLM) composition. Significant variables affecting the proposed method were evaluated and optimized to achieve the maximum extraction performance. Optimal conditions were obtained by NPOE with 4mgmL−1 nano-sorbent as the SLM composition, 105V as the driving force, pH 2 and 1.8 of the donor and acceptor phases, respectively, an extraction time of 15min and an agitation rate of 800rpm. The developed method was validated according to FDA guidelines. Regarding the validation results, the method is proved to be linear (R2=0.998) over concentrations ranging from 25 to 1500ngmL−1 (LOD=6.24ngmL−1). The mean RSD values for intra- and inter-day precision studies were 6.83 and 7.71%, respectively and the mean recoveries ranged between 98 and 106%. Finally, the validated method was successfully applied for sensitive, selective and rapid determination of Imatinib in patient’s plasma samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.