Abstract

Investigation into the photoinduced processes of 3-mercaptopyran-4-one is carried out using trajectory-based surface hopping simulations. Excitation into the near-degenerate higher singlet excited states reveals rapid internal conversion (IC) into S1 on a sub-50 fs timescale. Excited-state intramolecular proton transfer (ESIPT) also takes place simultaneously with IC. We observe that following tautomerization, the molecule has multiple relaxation pathways. A channel exists for it to nonradiatively decay into the tautomer ground-state or undergo rapid intersystem crossing (ISC) into the close-lying higher triplet state, which ultimately decays into T1. The simulations show that ISC is significantly enhanced after ESIPT, which is studied by tracking the changes in energy gaps and associated spin-orbit coupling elements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call