Abstract
In this work, we theoretically probe into the photo-induced hydrogen bonding effects between S0 state and S1 state as well as the excited state intramolecular proton transfer (ESIPT) behavior for a novel 2-[1,3]dithian-2-yl-6-(7 aH-indol-2-yl)-phenol (DIP) probe system. We first study the ground-state hydrogen bonding O–H⋯N behavior for DIP. Then we analyze the primary geometrical parameters (i.e., bond length, bond angle, and infrared (IR) stretching vibrational mode) involved in hydrogen bond, and confirm that the O–H⋯N of DIP should be strengthened in the first excited state. It is the significant prerequisite for ESIPT reaction. Combining the frontier molecular orbitals (MOs) with vertical excitation analyses, the intramolecular charge transfer (ICT) phenomenon can be found for the DIP system, which reveals that the charge redistribution facilitates ESIPT behavior. By constructing potential energy curves for DIP along the ESIPT reactional orientation, we obtain quite a small energy barrier (3.33 kcal/mol) and affirmed that the DIP molecule undergoes ultrafast ESIPT process once it is excited to the S1 state and quickly transfers its proton, forming DIP-keto tautomer. That is why no fluorescence of DIP can be observed in experiment, which further reveals the ultrafast ESIPT mechanism proposed in this work.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.