Abstract

Photodynamic therapy (PDT) of neoplastic cell lines is sometimes associated with the rapid initiation of apoptosis, a mode of cell death that results in a distinct pattern of cellular and DNA fragmentation. The apoptotic response appears to be a function of both the sensitizer and the cell line. In this study, we examined photodynamic effects of several photosensitizers on murine leukemia P388 cells. Two drugs, a porphycene dimer (PcD) and tin etiopurpurin (SnET2), which localized at lysosomal sites, were tested at PDT doses that resulted in 50% loss of viability (LD50), measured by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. An oligonucleosomal pattern of DNA degradation was observed within 1 h after irradiation. Neither sensitizer antagonized PDT-mediated internucleosomal DNA cleavage by the other. Very high PDT doses with either agent abolished this rapid internucleosomal cleavage. Exposure of cells to high concentrations of either sensitizer in the dark also resulted in rapid DNA fragmentation to nucleosomes and nucleosome multimers; this effect was not altered by the antioxidant 6-hydroxy-2,5,7,8-tetramethyl-chroman-2-carboxylic acid (trolox), although the latter could protect cells from cytotoxicity and apoptotic effects caused by LD50 PDT doses. Photodamage from two cationic sensitizers, which localized at membrane sites, caused rapid DNA cleavage to 50 kb particles; however, no further fragmentation was detected after 1 h under LD10, LD50 or LD95 PDT conditions. Moreover, the presence of either cationic sensitizer inhibited the rapid internucleosomal cleavage induced by SnET2 or PcD photodamage. The site of photodynamic action may therefore be a major determinant of the initiation and rate of progression of apoptosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call