Abstract

The time course of serum prostate-specific antigen (PSA) response to photodynamic therapy (PDT) of prostate cancer was measured. Seventeen patients were treated in a phase I trial of motexafin lutetium-PDT. PDT dose was calculated in each patient as the product of the ex vivo measured pre-PDT photosensitizer level and the in situ measured light dose. Serum PSA level was measured within 2 months before PDT (baseline), and at day 1; weeks 1 to 3; months 1, 2, and 3; months 4 to 6; and months 7 to 11 after PDT. At 24 hours after PDT, serum PSA increased by 98% +/- 36% (mean +/- SE) relative to baseline levels (P = 0.007). When patients were dichotomized based on median PDT dose, those who received high PDT dose showed a 119% +/- 52% increase in PSA compared with a 54% +/- 27% increase in patients treated at low PDT dose. Patients treated with high versus low PDT dose showed a median biochemical delay of 82 versus 43 days (P = 0.024), with biochemical delay defined as the length of time between PDT and a nonreversible increase in PSA to a value greater than or equal to baseline. Results show PDT to induce large, transient increases in serum PSA levels. Patients who experienced high PDT dose showed greater short-term increase in PSA and a significantly more durable PSA response (biochemical delay). These data strongly promote the need for individualized delivery of PDT dose and assessment of treatment effect in PDT of prostate cancer. Information gained from such patient-specific measurements could facilitate the introduction of multiple PDT sessions in patients who would benefit.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call