Abstract
Rapid identification of Escherichia coli strains is an important diagnostic goal in applied medicine as well as the environmental and food sciences. This paper reports an electrochemical, screen-printed biosensor array, where selective recognition is accomplished using lectins that recognize and bind to cell-surface lipopolysaccharides and coulometric transduction exploits non-native external oxidants to monitor respiratory cycle activity in lectin-bound cells. Ten different lectins were separately immobilized onto porous membranes that feature activated surfaces (ImmunodyneABC®). Modified membranes were exposed to untreated E. coli cultures for 30 min, rinsed, and layered over the individual screen-printed carbon electrodes of the sensor array. The membranes were were incubated 5 min in a reagent solution that contained the oxidants menadione and ferricyanide as well as the respiratory substrates succinate and formate. Electrochemical oxidation of ferrocyanide for 2 min provided chronocoulometric data related to the quantities of bound cells. These screen-printed sensor arrays were used in conjunction with factor analysis for the rapid identification of four E. coli subspecies ( E. coli B, E. coli Neotype, E. coli JM105 and E. coli HB101). Systematic examination of lectin-binding patterns showed that these four E. coli subspecies are readily distinguished using only five essential lectins.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have