Abstract
Extracellular vesicles (EVs), including exosomes, are specialized membranous nano-sized vesicles found in bodily fluids that are constitutively released from many cell types and play a pivotal role in regulating cell-cell communication and a diverse range of biological processes. Many different methods for the characterization of EVs have been described. However, most of these methods have the disadvantage that the preparation and characterization of the samples are very time-consuming, or it is extremely difficult to analyze specific markers of interest due to their small size and due to the lack of discrete populations. While methods for analysis of EVs have been considerably improved over the last decade, there is still no standardized method for characterization of single EVs. Here, we demonstrate a semi-automated method for characterization of single EVs by fluorescence-based nanoparticle-tracking analysis. The protocol that is presented addresses the common problem of many researchers in this field and provides the complete workflow for rapid isolation of EVs and characterization with PKH67, a general cell membrane linker, as well as with specific surface markers such as CD63, CD9, vimentin, and lysosomal-associated membrane protein 1 (LAMP-1). The presented results show a high level of reproducibility, as confirmed by other methods, such as Western blotting. In the conducted experiments, we exclusively used EVs isolated from human serum samples, but this method is also suitable for plasma or other body fluids and can be adjusted for characterization of EVs from cell culture supernatants. Irrespective of the future progress of research on EV biology, the protocol that is presented here provides a rapid and reliable method for rapid characterization of single EVs with specific markers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.