Abstract

Transient kinetic analysis of nucleotide binding to pig kidney Na,K-ATPase using a rapid filtration technique shows that the interaction between nucleotide and enzyme apparently follows simple first-order kinetics both for ATP in the absence of Mg(2+) and for ADP in the presence or absence of Mg(2+). Rapid filtration experiments with Na,K-ATPase membrane sheets may nevertheless suffer from a problem of accessibility for a fraction of the ATPase binding sites. Accordingly, we estimate from these data that for ATP binding in the absence of Mg(2+) and the presence of 35 mM Na(+) at pH 7.0 at 20 degrees C, the bimolecular binding rate constant k(on) is about 30 microM(-1) x s(-1) and the dissociation rate constant k(off) is about 8 s(-1). In the presence of 10 mM Mg(2+), the binding rate constant is the same as that in the absence of Mg(2+). For ADP or MgADP the binding rate constant is about 20 microM(-1) x s(-1) and the dissociation rate constant is about 12 s(-1). Results of rapid-mixing stopped-flow experiments with the fluorescent dye eosin are also consistent with a one-step mechanism of binding of eosin to the ATPase nucleotide site. The implication of these results is that nucleotide binding to Na,K-ATPase both in the absence and presence of Mg(2+) appears to be a single-step event, at least on the time scale accessible in these experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.