Abstract
The development of methods for production of a radiotracer for use in human studies with positron emission tomography (PET) is often a time-consuming process of optimizing radiolabelling yields and handling procedures. Sometimes the radiotracer is not the original drug, but rather a derivative with unknown in vivo pharmacological properties. We have developed a fast and simple method of testing putative new PET tracers in vivo in small animals. The procedure has been validated in rats with different PET tracers with known kinetic and pharmacological properties ([2-18F]2-fluoro-2-deoxy-D-glucose, [N-methyl-11C]Ro 15-1788, and [15O]butanol). The tracer concentration in arterial blood was continuously measured to obtain the brain input function. Following image reconstruction of the scans, time-activity curves of selected regions of interest were generated. Estimations of CMRglc (1.0 +/- 0.2 mumol g-1 min-1), CBF (1.4 +/- 0.4 ml g-1 min-1) and transport rate constants for [N-methyl-11C]Ro 15-1788 (K1 = 0.44 +/- 0.01 ml g-1 min-1 and k2 = 0.099 +/- 0.005 min-1) as well as calculated first pass extraction (0.32 +/- 0.1) are in reasonable agreement with literature values. Small animal studies require minimal amounts of radioactivity and can be performed without sterility and toxicology tests. They may serve as a preliminary basis for radiation safety calculations because whole body scans can be performed even with a head scanner.(ABSTRACT TRUNCATED AT 250 WORDS)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.