Abstract
Abstract In response to the rapid failure of grease lubrication under low surface speed with zero entraining velocity (ZEV), a common occurrence in ball screws or retainerless rolling element bearings, detailed observations were conducted through optical interferometric experiments. It was observed that despite a constant surface speed and load, the motion remained transient due to the transition between outlet cavitation and inlet starvation. The reciprocating motion of the cavitation zone rapidly depleted the contact area, leading to severe surface peeling. However, as the surface speed increased, this phenomenon was alleviated and eventually disappeared. To enhance lubrication performance, bilateral grooves were created using laser technology, proving to be advantageous for grease lubrication life under low surface speed conditions. Despite the occurrence of rapid surface failure, grease lubrication demonstrated clear benefits over oil lubrication when operating at low surface speeds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.