Abstract
Fatigue limit determination via the conventional Wöhler-curve method is associated with extended experimental times as it requires testing of a large number of specimens. The current paper introduces a methodology for fast, reliable and experimentally economic determination of the fatigue limit in monolithic and composite materials by means of combined usage of two nondestructive inspection methods, namely infrared (IR) lock-in thermography and acoustic emission (AE). IR thermography, as a real-time and non-contact technique, allowed the detection of heat waves generated due to thermo-mechanical coupling as well as of the energy dissipated intrinsically during dynamic loading of the material. AE, on the other hand, was employed to record the transient waves resulting from crack propagation events. Aluminum grade 1050 H16 and cross-ply SiC/BMAS ceramic matrix composites were subjected to fatigue loading at various stress levels and were monitored by an IR camera and AE sensors. The fatigue limit of the monolithic material, obtained by the lock-in infrared thermography technique and supported by acoustic emission was found to be in agreement with measurements obtained by the conventional S–N curve method. The fatigue limit of the ceramic matrix composite was validated with acoustic emission data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.