Abstract

Based on the substructure synthesis and modal reduction technique, a computationally efficient elastodynamic model for a fully flexible 3-RPS parallel kinematic machine (PKM) tool is proposed, in which the frequency response function (FRF) at the end of the tool can be obtained at any given position throughout its workspace. In the proposed elastodynamic model, the whole system is divided into a moving platform subsystem and three identical RPS limb subsystems, in which all joint compliances are included. The spherical joint and the revolute joint are treated as lumped virtual springs with equal stiffness; the platform is treated as a rigid body and the RPS limbs are modelled with modal reduction techniques. With the compatibility conditions at interfaces between the limbs and the platform, an analytical system governing differential equation is derived. Based on the derived model, the position-dependent dynamic characteristics such as natural frequencies, mode shapes, and FRFs of the 3-RPS PKM are simulated. The simulation results indicate that the distributions of natural frequencies throughout the workspace are strongly dependant on mechanism's configurations and demonstrate an axial-symmetric tendency. The following finite element analysis and modal tests both validate the analytical results of natural frequencies, mode shapes, and the FRFs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call