Abstract

A three-revolute prismatic spherical (3-RPS) parallel kinematic machine (PKM) module is proposed as an alternative solution for high-speed machining (HSM) tool. Considering the PKM as a typical compliant parallel device, whose three limb assemblages have bending, extending, and torsional deflections, this paper applies screw theory to establish an analytical compliance model for the device. The developed compliance model is then combined with the energy method to deduce a comprehensive dynamic model of the 3-RPS module. The solution for the characteristic equations of the dynamic model leads to the modal properties of the PKM module. Based on the eigenvalue decomposition of the characteristic equations, a modal analysis is conducted. The natural frequencies and corresponding mode shapes at typical and nontypical configurations are analyzed and compared with finite element analysis (FEA) results. With an algorithm of workspace partitions combining with eigenvalue decompositions, the distributions of natural frequencies throughout the workspace are predicted to reveal a strong dependency of dynamic characteristics on mechanism's configurations. At the last stage, the effects of some design parameters on system dynamic characteristics are investigated with the purpose of providing useful information for the conceptual design and performance improvement for the PKM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.