Abstract

Appropriate material selection and proper understanding of bandgap modification are key factors for the development of efficient photocatalysts. Herein, we developed an efficient, well-organized visible light oriented photocatalyst based on g-C3N4 in association with polymeric network of chitosan (CTSN) and platinum (Pt) nanoparticles utilizing a straightforward chemical approach. Modern techniques like XRD, XPS, TEM, FESEM, UV-Vis, and FTIR spectroscopy were exploited for characterization of synthesized materials. XRD results confirmed the involvement of α-polymorphic form of CTSN in graphitic carbon nitride. XPS investigation confirmed the establishment of trio photocatalytic structure among Pt, CTSN, and g-C3N4. TEM examination showed that the synthesized g-C3N4 possesses fine fluffy sheets like structure (100 to 500nm in size) intermingled with a dense layered framework of CTSN with good dispersion of Pt nanoparticles on g-C3N4 and CTSN composite structure. The bandgap energies for g-C3N4, CTSN/g-C3N4, and Pt@ CTSN/g-C3N4 photocatalysts were found to be 2.94, 2.73, and 2.72eV, respectively. The photodegradation skills of each created structure have been examined on antibiotic gemifloxacin mesylate and methylene blue (MB) dye. The newly developed Pt@CTSN/g-C3N4 ternary photocatalyst was found to be efficacious for the elimination of gemifloxacin mesylate (93.3%) in 25min and MB (95.2%) just in 18min under visible light. Designed Pt@CTSN/g-C3N4 ternary photocatalytic framework exhibited ⁓ 2.20 times more effective than bare g-C3N4 for the destruction of antibiotic drug. This study provides a simple route towards the designing of rapid, effective visible light oriented photocatalyts for the existing environmental issues.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call