Abstract

High cost, inherent destabilization, and intricate fixing of enzyme molecules are the main drawbacks of enzyme-based creatinine sensors. The design of a low-cost, stabilizable, and enzyme-free creatinine sensing probe is essential to address these limitations. In this work, an integrated three-dimensional (3D) free-standing electrode was designed to serve as a non-enzymatic creatinine sensing platform and was fabricated by rapid electrodeposition of a dense copper nanoparticle film on nickel foam (Cu NP film/NF). This low-cost, stable, easy-to-fabricate, and binder-free Cu NP film/NF electrode has abundant active sites and excellent electrochemical performance. Cyclic voltammetry measurements show a wide linear range (0.25-24 mM), low detection limit (0.17 mM), and high sensitivity (306 μA mM-1 cm-2). The developed sensor shows high recovery of creatinine concentration in real urine. Besides, it has better specificity, reproducibility, and robustness in detecting creatinine. These excellent results suggest that a non-enzymatic creatinine sensor based on an integrated 3D free-standing Cu NP film/NF electrode has good potential for non-invasive detection of urinary creatinine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call