Abstract

Methods of blood doping such as autologous and homologous blood transfusion are one of the main challenging doping practices in competitive sport. Whereas homologous blood transfusion is detectable via minor blood antigens, the detection of autologous blood transfusion is still not feasible. A promising approach to indicate homologous or autologous blood transfusion is the quantification of increased urinary levels of di(2-ethylhexyl) phthalate (DEHP) metabolites found after blood transfusion. The commonly used plasticizer for flexible PVC products, such as blood bags, is DEHP which is known to diffuse into the stored blood. Therefore, a straight forward, rapid and reliable assay is presented for the quantification of the main metabolites mono(2-ethyl-5-oxohexyl) phthalate, mono(2-ethyl-5-hydroxyhexyl) phthalate and mono(2-ethylhexyl) phthalate that can easily be implemented into existing multi-target methods used for sports drug testing. Quantification of the DEHP metabolites was accomplished after enzymatic hydrolysis of urinary glucuronide conjugates and direct injection using isotope-dilution liquid chromatography/tandem mass spectrometry. The method was fully validated for quantitative purposes considering the parameters specificity, linearity (1-250 ng/mL), inter- (2.4%-4.3%) and intra-day precision (0.7%-6.1%), accuracy (85%-105%), limit of detection (0.2-0.3 ng/mL), limit of quantification (1 ng/mL), stability and ion suppression effects. Urinary DEHP metabolites were measured in a control group without special exposure to DEHP (n = 100), in hospitalized patients receiving blood transfusion (n = 10), and in athletes (n = 468) being subject of routine doping controls. The investigation demonstrates that significantly increased levels of secondary DEHP metabolites were found in urine samples of transfused patients, strongly indicating blood transfusion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.