Abstract

The conventional detection methods cannot satisfy the need for early and rapid detection of monkeypox virus (MPXV) infection. This is due to complicated pretreatment, time consumption, and complex operation of the diagnostic tests. Based on surface-enhanced Raman spectroscopy (SERS), this study attempted to capture the characteristic fingerprints of the MPXV genome and multiple antigenic proteins without the need to design specific probes. The minimum detection limit of this method is 100 copies/mL, with good reproducibility and signal-to-noise ratio. Therefore, the relationship between characteristic peak intensity and the protein and nucleic acid concentration can be used to construct a concentration-dependent spectral line with a good linear relationship. Additionally, principal component analysis (PCA) could identify the SERS spectra of four different MPXV proteins in serum. Therefore, this rapid detection method in the current outbreak of monkeypox control and the future response to possible new outbreaks has broad application prospects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call