Abstract

Meloidogyne partityla is the dominant root-knot nematode (RKN) species parasitizing pecan in Georgia. This species is known to cause a reduction in root growth and a decline in the yields of mature pecan trees. Rapid and accurate diagnosis of this RKN is required to control this nematode disease and reduce losses in pecan production. In this study, a loop-mediated isothermal amplification (LAMP) method was developed for simple, rapid, and on-site detection of M. partityla in infested plant roots and validated to detect the nematode in laboratory and field conditions. Specific primers were designed based on the sequence distinction of the internal transcribed spacer (ITS)-18S/5.8S ribosomal RNA gene between M. partityla and other Meloidogyne spp. The LAMP detection technique could detect the presence of M. partityla genomic DNA at a concentration as low as 1 pg, and no cross reactivity was found with DNA from other major RKN species such as M. javanica, M. incognita and M. arenaria, and M. hapla. We also conducted a traditional morphology-based diagnostic assay and conventional polymerase chain reaction (PCR) assay to determine which of these techniques was less time consuming, more sensitive, and convenient to use in the field. The LAMP assay provided more rapid results, amplifying the target nematode species in less than 60 min at 70°C, with results 100 times more sensitive than conventional PCR (~2–3 hrs). Morphology-based, traditional diagnosis was highly time-consuming (2 days) and more laborious than conventional PCR and LAMP assays. These features greatly simplified the operating procedure and made the assay a powerful tool for rapid, on-site detection of pecan RKN, M. partityla. The developed LAMP assay will facilitate accurate pecan nematode diagnosis in the field and contribute to the management of the pathogen.

Highlights

  • Pecan (Carya illinoinensis) is an important nut crop in North America

  • The loop-mediated isothermal amplification (LAMP) assay was optimized using different LAMP primer concentrations, incubation temperatures, and duration using DNA extracted from M. partityla

  • The LAMP assay is an effective tool for plant-parasitic nematode identification because of its capability of DNA amplification at isothermal conditions with high sensitivity and efficiency [18, 22,23,24,25]

Read more

Summary

Introduction

Rapid detection of Meloidogyne partityla on Pecan using loop-mediated isothermal amplification managed, they can cause economic damage to pecans. Root-knot nematodes (RKNs) of the genus Meloidogyne are economically important plant-parasitic nematodes, which cause significant damage to pecan production. Three species of RKNs, Meloidogyne incognita, M. arenaria, and M. partityla have been reported as pathogenic to pecan [1,2,3]. Among these species, M. partityla is the dominant RKN parasitizing pecan which has a greater incidence in the southern United States [2,3,4,5,6]. A quick diagnosis approach will be helpful to know the latest status of the pecan RKNs in the southern United States

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call