Abstract

Plasmid-mediated quinolone resistance mechanisms have become increasingly prevalent among Enterobacteriaceae strains since the 1990s. Among these mechanisms, AAC(6')-Ib-cr is the most difficult to detect. Different detection methods have been developed, but they require expensive procedures such as Sanger sequencing, pyrosequencing, polymerase chain reaction (PCR) restriction, or the time-consuming phenotypic method of Wachino. In this study, we describe a simple matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) method which can be easily implemented in clinical laboratories that use the MALDI-TOF technique for bacterial identification. We tested 113 strains of Enterobacteriaceae, of which 64 harbored the aac(6')-Ib-cr gene. We compared two MALDI-TOF strategies, which differed by their norfloxacin concentration (0.03 vs. 0.5 g/L), and the method of Wachino with the PCR and sequencing strategy used as the reference. The MALDI-TOF strategy, performed with 0.03 g/L norfloxacin, and the method of Wachino yielded the same high performances (Se = 98 %, Sp = 100 %), but the turnaround time of the MALDI-TOF strategy was faster (<5 h), simpler, and inexpensive (<1 Euro). Our study shows that the MALDI-TOF strategy has the potential to become a major method for the detection of many different enzymatic resistance mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.