Abstract

Although Cyberlindnera fabinaii is a rare opportunist yeast species, its ability to cause septicemia, produce biofilm, and rapid acquisition of resistance to fluconazole and voriconazole, reinforced the urge for its identification from its closely related species. Widely used biochemical assays mainly identify Cyberlindnera fabinaii as Cyberlindnera jadinii and Wickerhamomyces anomalus, resulting in underestimation of this yeast in clinical settings. Moreover, the urge for a reliable molecular means of identification remains unsolved for 28 years. In order to unequivocally differentiate Cy. fabianii, Cy. mississipiensis, Cy. jadinii, and W. anomalus, we designed a dual-function multiplex polymerase chain reaction (PCR) assay. Challenging our dual-function multiplex PCR assay with 30 most clinically important yeast species, proved its specificity. Although conventional PCR could differentiate four target species, the real-time PCR counterpart due to Tm overlap misidentified Cy. mississipiensis as Cy. jadinii. Alongside of presenting a comprehensive literature review of published cases of Cy. fabianii from 1990 to 2018, we collected various clinical isolates from Tehran, Shiraz, and Fasa (July 1, 2017, to December 31, 2017) to find a passive relative distribution of these closely-related species in Iran. Subjecting our Iranian collection of yeast isolates to matrix-assisted laser desorption/ionization–time of flight (MALDI-TOF) MS and LSU and ITS rDNA sequencing revealed six isolates of Cy. fabianii (central venous catheter n = 2 and vaginal swabs n = 4) and one isolate of Cy. jadinii (vaginal swabs). Due to the use of biochemical assays in global ARTEMIS study, we encourage reidentification of clinical isolates of Cy. jadinii and Cy. jadinii using MALDI-TOF or Sanger sequencing that might lead to correcting the distribution of this fungus.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.