Abstract

The rapid crystallization of amorphous silicon utilizing a very-high-frequency (VHF) inductive coupling thermal microplasma jet of argon is demonstrated. Highly crystallized Si films were synthesized by adjusting the translational velocity of the substrate stage and flow rate of argon. The H concentration in the crystallized Si films decreased from 10 21 cm −3 to 10 19 cm −3 with no marked increases in oxygen and nitrogen impurity concentrations and defect density. The thin-film transistors of a 40-nm-thick crystallized a-Si film showed a field-effect mobility of 30–55 cm 2 /V s with a threshold voltage of 3–5 V. P-i-n thin-film solar cells were also fabricated for 1.5- μ m-thick crystallized a-Si films, which showed an efficiency of 5.5% and filled factor of 0.52. The crystallization proceeded with time constants of 10 ms, which was of 4–6 orders of magnitude lower than the conventional laser-crystallization of a-Si. The crystallization process is discussed in terms of the viscous flow of Si-network, due to the rapid local heating and melting of a-Si.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.