Abstract

The envisaged future dihydrogen (H2) economy requires a H2 gas grid as well as large deep underground stores. However, the consequences of an unintended spread of H2 through leaky pipes, wells, or subterranean gas migrations on groundwater resources and their ecosystems are poorly understood. Therefore, we emulated a short-term leakage incident by injecting gaseous H2 into a shallow aquifer at the TestUM test site and monitored the subsequent biogeochemical processes in the groundwater system. At elevated H2 concentrations, an increase in acetate concentrations and a decrease in microbial α-diversity with a concomitant change in microbial β-diversity were observed. Additionally, microbial H2 oxidation was indicated by temporally higher abundances of taxa known for aerobic or anaerobic H2 oxidation. After H2 concentrations diminished below the detection limit, α- and β-diversity approached baseline values. In summary, the emulated H2 leakage resulted in a temporally limited change of the groundwater microbiome and associated geochemical conditions due to the intermediate growth of H2 consumers. The results confirm the general assumption that H2, being an excellent energy and electron source for many microorganisms, is quickly microbiologically consumed in the environment after a leakage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.