Abstract
Constructing heterojunctions between phase interfaces represents a crucial strategy for achieving excellent photocatalytic performance, but the absence of sufficient interface driving force and limited charge transfer pathway leads to unsatisfactory charge separation processes. Herein, a doping-engineering strategy is introduced to construct a In─N bond-bridged In2S3 nanocluster modified S doped carbon nitride (CN) nanosheets Z-Scheme van der Waals (VDW) heterojunctions (In2S3/CNS) photocatalyst, and the preparation process just by one-step pyrolysis using the pre-coordination confinement method. Specifically, S atoms doping enhances the bond strength of In─N and forms high-quality interfacial In─N linkage which serves as the atomic-level interfacial "highway" for improving the interfacial electrons migration, decreasing the charge recombination probability. The detailed characterization results, along with theoretical calculations, confirm that both S atom incorporation and the formation of Z-Scheme VDW heterojunctions synergistically improve the internal electric field. This, in turn, accelerates charge separation and simultaneously enhances light absorption capacity. Consequently, the optimal hydrogen evolution performance of In₂S₃/CNS2 is 160.8 times greater than that of In₂S₃, 8.2 times higher than that of CNS. This study emphasizes the crucial role of atomic-scale interface regulation and intrinsic electric fields in Z-Scheme VDW heterojunctions, contributing to ameliorative photocatalytic performance.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have