Abstract
The use of Raman spectroscopy coupled with chemometrics for the rapid identification, characterization, and quality assessment of complex cell culture media components used for industrial mammalian cell culture was investigated. Raman spectroscopy offers significant advantages for the analysis of complex, aqueous-based materials used in biotechnology because there is no need for sample preparation and water is a weak Raman scatterer. We demonstrate the efficacy of the method for the routine analysis of dilute aqueous solution of five different chemically defined (CD) commercial media components used in a Chinese Hamster Ovary (CHO) cell manufacturing process for recombinant proteins.The chemometric processing of the Raman spectral data is the key factor in developing robust methods. Here, we discuss the optimum methods for eliminating baseline drift, background fluctuations, and other instrumentation artifacts to generate reproducible spectral data. Principal component analysis (PCA) and soft independent modeling of class analogy (SIMCA) were then employed in the development of a robust routine for both identification and quality evaluation of the five different media components. These methods have the potential to be extremely useful in an industrial context for "in-house" sample handling, tracking, and quality control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.