Abstract

We report soft independent modeling of class analogy (SIMCA) analysis of laser-induced plasma emission spectra of edible salts from 12 different geographical origins for their classification model. The spectra were recorded by using a simple laser-induced breakdown spectroscopy (LIBS) device. Each class was modeled by principal component analysis (PCA) of the LIBS spectra. For the classification of a separate test data set, the SIMCA model showed 97% accuracy in classification. An additional insight could be obtained by comparing the SIMCA classification result with that of partial least squares discriminant analysis (PLS-DA). Different from SIMCA, the PLS-DA classification accuracy seems to be sensitive to addition of new sample classes to the whole data set. This indicates that the individual modeling approach (SIMCA) can be an alternative to global modeling (PLS-DA), particularly for the classification problems with a relatively large number of sample classes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.