Abstract
Film cooling is an important cooling method to decrease the turbine blade surface temperature, and its average cooling efficiency is mainly dependent on the cooling structures of internal passageways and the shapes of film cooling holes. Compared with standard cylindrical film cooling holes, abnormal film cooling holes have higher average cooling efficiency. But it is difficult to manufacture these holes using traditional machining methods. In this paper, a novel process was developed to fabricate turbine blades with abnormal film cooling holes by combining stereolithography (SL) technology with gelcasting technology. To decrease the drying shrinkage, the freeze-drying technique was applied to treat the wet ceramic casting mold green body surrounded by the SL mold, and the proper sintering process parameters were determined for lowering the sintered shrinkage. Finally, the integral ceramic casting mold was obtained, and a turbine blade with converging–diverging film cooling holes was rapidly cast to verify the feasibility of the proposed process.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have