Abstract
CRISPR-Cas12a RNA-guided complexes have been developed to facilitate the rapid and sensitive detection of nucleic acids. However, they are limited by the complexity of the operation, risk of carry-over contamination, and degradation of CRISPR RNA (crRNA). In this study, a Cas12a-based single-stranded DNA (ssDNA)-modified crRNA (mD-crRNA)-mediated one-step diagnostic method (CasDOS) was established to overcome these drawbacks. mD-crRNA consisted of wild-type crRNA (Wt-crRNA) with ssDNA extensions at the 3′ and 5′ ends. Compared to Wt-crRNA, mD-crRNA exhibited a 100–1000-fold increase in sensitivity in the one-step assay, reducing the cis-cleavage activity of Cas12a to avoid excessive cleavage of the target DNA in the early stages of the reaction, leading to increased amplification and accumulation of the target amplicons, and improved the speed and intensity of the generated fluorescence signal. The detectability of CasDOS was 16.6 aM for the constructed plasmids of Streptococcus agalactiae (GBS), human papillomavirus type 16 (HPV16), and type 18 (HPV18). In clinical trials, CasDOS achieved 100% accuracy in identifying the known genotypes of the five HPV DNA samples. Moreover, CasDOS showed complete concordance with the qPCR results for GBS detection in ten vaginal or cervical swab samples, with a turnaround time from sampling to results within 30 min. In addition, mD-crRNA remained stable after Ribonuclease R treatment, suggesting that it might be more suitable as a raw material for the CRISPR detection kit. In conclusion, we have developed a universal, rapid, and highly sensitive one-step CRISPR detection assay.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have