Abstract

Phase-selective organogelators (PSOGs) that have immense potential in effective oil/water separation, antifouling coating, ice-repellent coating, and so on are often synthesized by following complex and multistep synthesis procedures that involve additional and tedious purification steps. On the other side, a comprehensive, selective, environmentally friendly, and energy-efficient separation of different and complex forms of oil spillages (e.g., floating oil or oil-in-water emulsions) from contaminated aqueous phase is challenging to achieve based on earlier-reported PSOGs and their composites. Here, vanillin, a naturally abundant molecule, is unprecedentedly exploited to synthesize a purified PSOG (with a yield of 97%) by adopting a catalyst-free, single-step, and rapid (<2 min) synthesis process under ambient conditions. The Schiff's base reaction between the aldehyde group of vanillin and the primary amine group of octadecylamine provided the desired and purified PSOG-without demanding any additional purification processes (e.g., column chromatography). The appropriate coexistence of the imine linkage, hydrocarbon tail, and hydroxyl group in the vanillin-derived organogelator (VDOG) played an important role in achieving a self-standing organogel that sustained ∼60 times the external load of its weight-without having any noticeable physical deformation. Further, an appropriate and facile integration of the synthesized VDOG with a commercially available biodegradable porous and spongy matrix (i.e., polyurethane sponge) allowed us to develop an oil-selective absorbent with (1) enhanced water repellency (140°) and (2) superior oil-absorption capacity (i.e., 55.2 times its own weight). Such composite material remained durable for repetitive (at least for 50 cycles) and distillation-free separation/recovery of crude oil at practically relevant severe and diverse settings. Thereafter, the synthesized VDOG was successfully and unprecedentedly extended to demonstrate rapid, facile, and efficient separation of surfactant-stabilized oil-in-water emulsions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call