Abstract

Durable and formaldehyde-free flame-retardant (FR) modification of wool fabric using phosphorous compounds is of great interest. In this study, Schiff base imine groups were firstly introduced onto wool fiber through aldehyde-amine condensation between p-hydroxybenzaldehyde and wool fiber. Then, an efficient and durable FR wool fabric was fabricated by incorporating diethyl phosphite (DEP) into a Schiff base intermediate via the Pudovik reaction. The potential reaction mechanism among p-hydroxybenzaldehyde, DEP and wool fiber was explored. The thermal stability, smoke generation ability, FR ability and washing durability of the modified wool fabric were studied. The FR modification significantly increased the thermal resistance of wool fabric and suppressed smoke generation by half. The wool fabric modified by 20 g/L DEP was able to self-extinguish during the burning test, suggesting the higher FR efficiency of the DEP-incorporated Schiff base system. The modified wool fabric still self-extinguished after 20 commercial launderings, which is attributed to the covalent grafting of DEP onto wool fiber. Char residue analyses revealed the condensed charring FR mechanism of the DEP-incorporated Schiff base system on wool. This work provides a novel approach to prepare efficient and durable FR functional wool fabric via the Schiff base reaction and Pudovik reaction among p-hydroxybenzaldehyde, DEP and wool fiber.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call