Abstract
Spatially offset Raman spectroscopy (SORS) is a novel technique capable of measuring samples through the original packaging and recovering the spectra without the contribution of surface layers. Here, a portable SORS equipment was used to measure 62 samples of margarines and fat spreads through the original plastic container. Chemometric tools were used to analyse the data obtained. A total of 25 classification models were developed based on: (i) geographical origin, (ii) vegetable oils and (iii) some significant minor constituents present in the samples. Partial least squares-discriminant analysis (PLS-DA), support vector machine (SVM) and soft independent modelling of class analogy (SIMCA) were used for model classification. Quantitative analysis using the partial least squares regression (PLSR) method was also performed to determine the total fat content. In parallel, a benchtop conventional Raman spectrometer was used to analyse the same samples, develop the models with the same training and validation sets in order to compare the results. The calculated classification performance metrics showed better classification models from SORS data than conventional Raman spectroscopy (CRS), highlighting the one-class SIMCA models for margarines containing phytosterols, olive oil or linseed oil. These models exhibited very high predictability (performance parameters with values equal to or higuer than 0.8, 0.9 and 1, respectively). The quantitation model developed from SORS exhibited a higher R2 than from CRS data, and prediction errors below 5% from SORS versus errors between 5 and 13% from CRS data.These results reveal the ability of SORS to avoid the influence of fluorescence, a major drawback when analysing Raman spectra, but also the potential of the technique as a fast, non-destructive and non-invasive analytical technique in the field of food analysis. In conclusion, the tandem 'SORS-chemometrics' has been shown to be a potential tool in the food quality and food authentication fields. Thus, it is necessary to perform further investigations in this field in order to advance the knowledge of this technique and to be able to develop new methods of rapid analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.