Abstract

Diagnosis of Visceral Leishmaniasis is challenging due to the shared clinical features with malaria, typhoid, and tuberculosis. A CoFe2O4-C60 nanocomposite-based immunosensor decorated with a sensitive A2 peptide antigen was fabricated to detect anti-A2 antibodies for application in visceral leishmaniasis diagnosis. The flame-synthesised nanocomposite was characterised using Fourier Transform Infrared spectroscopy (FTIR), X-ray diffraction spectroscopy (XRD), Scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDX), Raman spectroscopy and electrochemical impedance spectroscopy (EIS) techniques. N terminated specific A2 peptide epitope antigen (NH2-QSVGPLSVGP-OH) was synthesised and characterised by high-performance liquid chromatography (HPLC) and liquid chromatography-mass spectroscopy (LC-MS). Using EDC/NHS, A2 peptide antigen (Apg) was immobilised on the CoFe2O4-C60-modified electrode. The performance of the immunosensor, Apg-CoFe2O4-C60NP/GCE, was evaluated by testing its ability to detect varying concentrations of anti-A2 antibody solution in PBS and spiked serum with 1 mM [Fe(CN)6]3−/4− in 0.01 M PBS (pH 7.4) as supporting electrolyte. using differential pulse voltammetry. The immunosensor showed excellent reproducibility and a linear range of 10−10–10−1 µg/mL, with an experimental detection limit of 30.34 fg/mL. These results suggest that the fabricated sensor has great potential as a tool for diagnosing visceral leishmaniasis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call