Abstract

Contamination of water by fecal matter and potential human enteric pathogens is a serious health concern. Microbiological water quality has been assessed by conventional culture-based methods of fecal indicator bacteria (FIB). Recently, molecular techniques for FIB have been introduced as alternative tools for rapid detection. However, such molecular techniques require a modern laboratory setting, expensive equipment, and skilled personnel. In this study, we developed a simple and rapid DNA extraction method based on a syringe filter without any specialized equipment. Furthermore, loop-mediated isothermal amplification (LAMP) PCR for fecal indicator bacteria (FIB) (i.e. E. coli and E. faecalis) was carried out using the DNA extracts from the syringe-filter based DNA extraction method. The efficiency of the extracted DNA from the syringe-filter based method was comparable to the results of the commercial kit method. We also tested fresh and marine-water collected directly from different locations in Singapore that were spiked with E. coli or E. faecalis. The LAMP assays combined with our DNA extraction method showed higher sensitivity and more tolerance to PCR inhibitors than that of conventional PCR methods. We further developed a portable LAMP device to conduct isothermal PCR reactions for rapid on-site measurement of FIB. As the color changes in the end point of the LAMP reaction can be observed with the naked eye, the portable LAMP device was easily operated and quick, obtaining results in 30 min. The simple, portable and user-friendly platform can be used as an initial screening for the rapid detection of the presence FIB in lower-resource settings. In conclusion, the portable LAMP device coupled with a syringe-filter based DNA extraction method enables us to detect the presence of FIB for assessing microbial water quality within 1 h without any sophisticated laboratory equipment or highly trained personnel.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.